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ABSTRACT 

A collineation group F of PG(d, q), d >= 3, which is transitive on lines is 

shown to be 2-transitive on points unless d = 4, q = 2 and ] F ] = 31'5. 
m m 

I I 

The purpose of  this paper is to prove the following result. 

THEOREM 1. Let F < PFL(d + 1,q) be transitive on the lines of the pro- 

jective space PG(d,q),  where d > 3. Then either F is 2-transitive on the points 

of the space or d = 4, q = 2 and Irl = 31- 5.  

Thus, line-transitive collineation groups are generally 2-transitive. The deter- 

mination of all 2-transitive collineation groups of finite projective spaces is a 

difficult question (see [14], [17]); our proof  gives no information about them. 

This theorem was motivated by some recent results of  D. Perin [11]. He needed 

it in order to complete his results in characteristic 2. For  completeness, we will 

state Perin's result after Theorem 1 is plugged in: 

THEOREM 2. Let F < PFL(d + 1,q) be transitive on the planes o f  PG(d,q),  

where d > 4. Then F > PSL(d  + I ,q ) ,  except perhaps when q = 2  and d 

is odd. 

Perin also obtained analogous results for transitivity on higher dimensional 

subspaces--  and no ambiguity then occurs when q = 2 - - b u t  Theorem 1 is 

not needed except for plane-transitivity. Our proof  will be completely different 

from Perin's. He concentrated on primitive divisors of  q a - ~ _  1, whereas we are 

mostly concerned with 2-groups. 
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PRoof OF TnEOm~M 1. We will assume that I" is not 2-transitive on points. 

It follows from line-transitivity that, for each line L, 1" L is not 2-transitive on L,  

this fact will be used frequently throughout the proof. 

The points and lines form a design with v = (q a+ 1 _ 1)/(q - 1), r = (q ~ 1)/(q - 1), 

k = q + 1, 2. = 1 and b = rv/k.  Let p be the prime dividing q. 

Set A = F c a P G L ( d  + 1,q). Clearly A # 1. 

NOTATION. If  X is a subspace, dim X is its dimension (points have dimension 0) 

and A(X) is its pointwise stabilizer. If  Z is a subset of F, F(Z) is its set of fixed 

points and N(I~) v~z) the permutation group induced by its normalizer on F(Z). 

We proceed in a series of  steps. 

I) F is primit ive on points. 

Pkoor .  (Compare Higman and McLaughlin [5];see also [6] and [2, p. 79].) 

Let C be an imprimitivity class of  size c, 1 < c < v, and set n = v/c. Let x ~ C. 

Since F is transitive on v points and b lines, all line-orbits of F~ have lengths 

divisible by b/(b,v) = r/e,  where e = k/(v, k) .  Let F ,  have s orbits of lines on 

x of lengths wit~e, i = l , . . . , s .  Then t~ = I L, C cl is independent of  the choice 

of L, in the ith orbit. Thus, 

r (t - 1), c - 1 = Z~(t~- 1)w~r/e = e 

where t -  1 = E~(t~-1)w~. Clearly t > 2. Now 
F 

v -  n = - n ( t - 1 )  
e 

v - 1  = r e ( k - l )  
e 

n - 1  = r _ _ [ e ( k _ i ) _ n ( t _ l ) ] .  
e 

Consequently, e ( k - 1 ) >  n ( t - 1 ) >  n -  1 >= t ie .  Since e < q + 1 we have 

(q + l)Zq > ( q a _  l ) / ( q _ l ) .  Then  d = 3 or 4.  i f  d = 3 then e = l a n d k - l > r ,  

which is not the case. Now d = 4 and e = k. Here e ( k -  1) > 2r/e is impossible. 

so we must have t = 2 ,  n - t  = r / e ,  and e ( k - 1 ) - n ( t - 1 ) =  1. Then 

n =  l + r / e =  l + ( q 2 + l )  and n = e ( k - 1 ) - l = ( q + l ) q - 1 .  

Consequently, q = 3 ,  n = 11, and c =  11. Choose j with t j > l .  As 

1 = t - 1  = ~ i ( t ~ - l ) w i ,  we must have t i = 2 a n d w  i = 1 .  Since F~ acts on 

the 10 = wjr/e points of C -  {x}, it follows that the group F c induced by F on C 

is 2-transitive of  degree 11. A Sylow ll-subgroup ~* of  F is cyclic and has a 
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subgroup Y~ of  order 11 fixing each class C. Thus ]~ is in the stabilizer H in F of  

all 11 clases. Since NerLts. 3) ( ~  *) = Ner~.ts.3) (~ )  is Frobenius of  order 112.5, N~(Z) 

= C~(E), so H has a normal ll-complement. Then E c = I I C < F c  c which is absurd. 

II) I f l A  I is odd then d = 4, q = 2 and Irl -- 3 1 . 5 .  

PROOF. By (I) and the Feit-Thompson Theorem [3], F has a normal elementary 

abelian /-subgroup A < A transitive on points (where l > 2 is a prime). The 

complete inverse image of A in GL(d + 1, q) acts fixed-point-freely, so that A 

is cyclic and v = Iml = 1. Then b = l(q a -  1)/(q 2 -  1) divides I N FL,d+,,q,(A)I 
= l(d + 1)i, where q = p i  Now (II) follows easily. (Compare Ltineburg [9] 

for this part of the proof  of Theorem 1.) 

From now on we will assume that I AI is even. 

III) p > 2. 

PROOF. Suppose that p = 2 and let a E A be an involution. Then F(a) is a 

subspace. Suppose first that d i m F ( a ) <  1. Then d i m F ( a ) =  1 and d = 3. 

Each plane E ~ F(a) is fixed by a .  Each line in E determines a conjugate of a 

fixing that line pointwise. Thus, the global stabilizer FE of E induces a collinea- 

tion group II of  E such that each line of  E is fixed pointwise by an involution 

in 17 fixing just the points of that line. By [2, p. 193], there is a line L of E such 

that Il(L) is transitive on E - L and IIL is transitive on L. It follows that, for 

any line M ~ L of E ,  I l (L )u  is transitive on M - L C 3  M .  Thus, FM is 2-transitive 

on M, so F is 2-transitive on points, which is not the case. 

We can thus find a subspace X with dim X > 2 and ]A(X)] even. Choose X 

such that dim X > 2, X = F(E) for some 2-group E ~ 1, and d imX is minimal 

for such a subspace. We may assume that X is Sylow in A(X). 

Consider a line L c X.  Clearly IA I is even. Let A L 2> A D X with I A:ZI = 2. 

Then A x is an involution. By our choice of X and E, dim F(A) < 1. Since 

dim X > 2, dim F(A) = 1. Then E is not Sylow in A(L), so we can choose A 

with L = F(A). Clearly A x fixes each plane E of  X containing L. Since L can 

be taken as any line of E ,  by considering N(E)g we obtain the same contradic- 

tion as in the first paragraph. 

IV) A contains an involution which has f ixed points. 

PROOF. Suppose not. Let A and F be the complete inverse images of A and F 

in FL(d + 1, q), so that A is a group of linear transformations of a d + 1-dimen- 
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sional GF(q)-space V. Our hypothesis is that A has just one involution, and 

hence has cyclic or generalized quaternion Sylow 2-subgroups. 

Clearly v is even. By (I), O (A) = 1 and A is not a 2-group. By Burnside's trans- 

fer theorem, A has generalized quaternion Sylow 2-subgroups. The Gorenstein- 

Walter Theorem [4] thus implies that either (i) A ~ A 7 or (ii) A D A* with 

A* ~ PSL(2,m) for some odd m. By (I), Cr(A*) = 1, so either (i) F ~ A 7 

or $7, or (ii) F is isomorphic to a subgroup of PFL(2, m) containing PSL(2, m). 

first that p l l r l  (where p is again the prime dividing q). Since 
I 

Suppose P g b, 
I 

each normal subgroup of F of index a power of p must be transitive on lines. 

Consequently, we may assume that A contains a Sylow p-subgroup II of F .  

Clearly II fixes a point x. Note that p Ir l for any line M; for if 1 ~ n e f f .  

then n fixes some subspace X containing F(n) as a hyperplane, and zc induces a 

nontrivial elation on X.  We now claim that x is the only fixed point of H; for if 

II fixes y ~ x and L =  xy, then H < A(L), which is impossible since 

p [F~] and 17 is Sylow in F.  In particular, N(II) fixes x,  so NA(II) has odd order 

(ii) must hold, as otherwise Is71 _-__ (74. 1)( 7 3 -  1)/( 7z - 1)(7 - 1) > ]$7]. 
As above we may assume 17 < A*. An examination of the Sylow subgroups of A* 

shows that IN .(17)1 can be odd only if plm and m = 3(mod4).  There is a 

fixed line L of 17, and II(L) is Sylow in A(L). By the Frattini argument, 

A L =A(L)NaL(II(L)). Since ALL has even order (by (II)), so does Na(II(L)). 

But m --- 3 (mod 4), so H(L) must be trivial. Consequently, m = 1171 ---- ILl-  1 

= q. Now 

qa+l  1 < [A*[ < m  3 < q3 
q - 1  = = ' 

contradicting the fact that d > 3. 

Thus, p  'lrl In particular, since 3 I AI, p ~ 3 and q > 5. Note that d 

is odd as v = (qn+l _ 1)/(q - 1) is even. Also 

(qd+X_ 1)(qa_ 1) q~+l)qa-1 q4. 
1) IF] >= b = ( q - 1 ) ( q 2 - 1 )  > > 

If( i)  holds, p # 3, 5, 7. By (1), 7 ! > q4 > 114, which is false. 

Thus, (ii) holds and 

2) m ' >  Irl > q (3d-1, _>_ q,.  

If  m < 9 then, by (2), 73 > Ir l  > 5', which is false. Similarly, if m = 9 then p 
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must be 7 (as p ,[" IF I) and 2" 9 a > IF[ > 74, while if m = 11 then 11 a > [F I > 74. 

Thus, m > 13. 

By [13], ,~ has a normal subgroup A ~ SL(2, m). Let K be the algebraic 

closure of GF(q). Then V|  K is a d + 1-dimensional A-module. Let W be any 

nontrivial irreducible constituent of V |  Then d +  1 > dimrW = e. On 

the other hand, W is an absolutely irreducible 7X-module of characteristic p,  

where p X I A[. Consequently, W can be lifted to a complex irreducible A-module 

of dimension e. 

By [13], each nontrivial complex irreducible representation of SL(2, m) has 

degree > (m-1 ) /2 .  Thus, d + 1 > e > ( m - 1 ) / 2 .  

Now (2) yields m 16 > q2(ad-1) => 5am-~.  However, this is false for m = 13, 

and for x > 13 the function 161ogx - (3x - l l ) log5  is decreasing. This contra- 

diction proves (IV). 

V) The followin9 conditions hold: 

a) Each line L determines a unique point wL of Lsuch that F L fixes WL and 

At. is transitive on L -  {WL}, and 

b) l A(L) I - 0(rood p). 

PROOF. By (IV) we can find an involution a E A with fixed points. Then 

F(a) = Y1 k3 Y2 with Y1, Y2 disjoint subspaces spanning the whole space. Suppose 

first that both of these have dimension < 1. Then both have dimension 1 and a 

fixes all planes E D I11. For each line L of E there is a conjugate of a fixing just 

the points of  L. By [2, 196] Aw is (e, M)-transitive for some c ~ M c E, so (b) holds. 

I f  c 6 L c E and L ~: M then AcL is transitive on L - (c}. Since I" is not 2-tran- 

sitive, F L must fix c, so (a) holds. 

Now suppose dim Y, _>_ 2. Let E ~ 1 be a 2-group in A maximal with respect 

to fixing some plane pointwise; let X be a subspace of dimension => 2 fixed 

pointwise by E and not properly contained in any other such supspace. Then 

is Sylow in A(X). 

Suppose A > A > E ,  where ]A:EI  = 2 and A fixes some point x ~ X .  Let 

it ~ A - E. Then E fixes X and X z pointwise, while x e X ~ X ~. The choice of  X 

then forces X = X a, so A fixes X. Also, the choice of  E shows that A fixes no 

plane of  X pointwise. 

Consider a line L of X .  There is a conjugate of a fixing just 2 points x, y of L. 

We can thus f i n d A  with A x y > A ~ > E  and [A:E] = 2 .  Then A x i s  an in- 

volution having fixed points. Let F ( A ) n  X = X 1 U X2 with X1, X2 subspaces. 
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By our choice of ]E, both Xa and Xz  have dimension __< 1, and hence at least 

one of them has dimension 1. Then Z has smaller order than a Sylow 2-subgroup 

of A(L), so we can choose our A so that F(A) t3 X = L n X o for some suspbace 

Xo. All planes E of X containing L are fixed by A x. Since L can be taken 

to be any line of E,  (a) and (b) hold as in the first paragraph. 

We now complete the proof of the theorem by playing the same game with 

p-groups as we have been playing with 2-groups. We may assume that d is chosen 

as small as possible in order to obtain a contradiction. 

Let II be a p-subgroup of A maximal with respect to fixing at least 2 points. 

By (Vb), I I r  1. Also, F -- F(II) is a subspace of dimension >__ 1. By [8, pp. 

400-401], N~(II) is transitive on F .  Thus, d i m F  > 2 by (Va). 

Let L be any line of F .  Let ~ >= H by a Sylow p-subgroup of AL. Clearly 

D 17. By (Va), [~/II[  = q. ~ acts on F ,  and by our choice of 17 each element 

~b r 1 of R e fixes just one point of F .  Here q5 fixes L and WL. If  q~ fixes a line 

L' ~ L of F ,  it fixes a point of L',  so that WL �9 12, L and L' span a plane, and ~b 

fixes more than one line and hence more than one point of this plane, which 

is not the case. Thus, each line of F is fixed by a p-element of A fixing no other 

line of F .  By Gleason's Lemma, NA(I-I ) is transitive on the lines of F .  Clearly, 

N~(II) F is not 2-transitive. The minimality of d then implies that dim F = 2. 

Now Na(II) v is a transitive subgroup of PGL(3,q) which is not 2-trans- 

itive. By [10] or [1], NA(II) r contains a normal cyclic subgroup and, if 

x = w, ,  lN (17)f[-- 1 or 3. However, rbV fixes x and has order q . Thus, q=  3. 

It follows that F = A and N(II)~ has precisely (13-1)/3 = 4 orbits o n F - { x } .  

We now show that N(17)x has at most 3 orbits on F - {x}. To see this, note 

that the number of point-orbits ~ {x} of F x is the number of orbits of F of 

ordered pairs of distinct points. By line-transitivity, if L is a line, the latter number 

is just the number of orbits of FL of ordered pairs of distinct points of L. By 

(Va), FL is transitive on L - {wL}, and by (IV), FL is even 2-transitive On the 

3 points of L - {wL}. Thus, FL has precisely 3 orbits of ordered pairs of distinct 

points of L. 

Let {x}, Al (x ) ,  A2(x),  A3(x) be the point-orbits of Fx. If  y �9 F (3 Ai(x) for 

some i, then II is a Sylow p-subgroup of Fxy. It follows that N(1-l)x is transitive 

on F c3 Ai(x).  Consequently, N(I-I)~ has at most 3 orbits on F -  {x}, which 

is ridiculous. 

This contradiction completes the proof of the theorem. 
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