LINE-TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES

BY

WILLIAM M. KANTOR[†]

ABSTRACT

A collineation group Γ of *PG(d, q), d* \geq 3, which is transitive on lines is shown to be 2-transitive on points unless $d = 4$, $q = 2$ and $|\Gamma| = 31.5$. I I

The purpose of this paper is to prove the following result.

THEOREM 1. Let $\Gamma \leq P\Gamma L(d+1,q)$ be transitive on the lines of the pro*jective space PG(d,q), where* $d \geq 3$ *. Then either* Γ *is 2-transitive on the points of the space or d = 4, q = 2 and* $|\Gamma| = 31 \cdot 5$.

Thus, line-transitive collineation groups are generally 2-transitive. The determination of all 2-transitive collineation groups of finite projective spaces is a difficult question (see [14], [17]); our proof gives no information about them.

This theorem was motivated by some recent results of D. Perin [11]. He needed it in order to complete his results in characteristic 2. For completeness, we will state Perin's result after Theorem 1 is plugged in:

THEOREM 2. Let $\Gamma \leq P\Gamma L(d+1,q)$ be transitive on the planes of $PG(d,q)$, where $d \ge 4$. Then $\Gamma \ge PSL(d+1,q)$, except perhaps when $q = 2$ and d *is odd.*

Perin also obtained analogous results for transitivity on higher dimensional subspaces-- and no ambiguity then occurs when $q = 2$ --but Theorem 1 is not needed except for plane-transitivity. Our proof will be completely different from Perin's. He concentrated on primitive divisors of $q^{d-1} - 1$, whereas we are mostly concerned with 2-groups.

[†] Research supported in part by NSF Grant GP 28420. Received October 26, 1971

230 **W.M. KANTOR** Israel J. Math.,

PROOF OF THEOREM 1. We will assume that Γ is not 2-transitive on points. It follows from line-transitivity that, for each line L, Γ_L is not 2-transitive on L; this fact will be used frequently throughout the proof.

The points and lines form a design with $v = (q^{d+1} - 1)/(q - 1)$, $r = (q^d - 1)/(q - 1)$, $k = q + 1$, $\lambda = 1$ and $b = rv/k$. Let p be the prime dividing q. Set $\Delta = \Gamma \cap PGL(d+1,q)$. Clearly $\Delta \neq 1$.

NOTATION. If X is a subspace, dim X is its dimension (points have dimension 0) and $\Delta(X)$ is its pointwise stabilizer. If Σ is a subset of Γ , $F(\Sigma)$ is its set of fixed points and $N(\Sigma)^{F(\Sigma)}$ the permutation group induced by its normalizer on $F(\Sigma)$.

We proceed in a series of steps.

I) F *is primitive on points.*

PROOF. (Compare Higman and McLaughlin [5]; see also [6] and [2, p. 79].) Let C be an imprimitivity class of size c, $1 < c < v$, and set $n = v/c$. Let $x \in C$.

Since Γ is transitive on v points and b lines, all line-orbits of Γ_x have lengths divisible by $b/(b, v) = r/e$, where $e = k/(v, k)$. Let Γ_x have s orbits of lines on x of lengths $w_i r/e$, $i=1,\dots,s$. Then $t_i = |L_i \cap C|$ is independent of the choice of L_i in the *i*th orbit. Thus,

$$
c-1 = \Sigma_i(t_i-1)w_ir/e = \frac{r}{e}(t-1),
$$

where $t-1 = \sum_i (t_i-1)w_i$. Clearly $t \ge 2$. Now

$$
v - n = \frac{r}{e} n(t - 1)
$$

\n
$$
v - 1 = \frac{r}{e} e(k - 1)
$$

\n
$$
n - 1 = \frac{r}{e} [e(k - 1) - n(t - 1)].
$$

Consequently, $e(k-1) > n(t-1) > n-1 \ge r/e$. Since $e \le q+1$ we have $(q + 1)^2 q > (q^d - 1)/(q - 1)$. Then $d = 3$ or 4. If $d = 3$ then $e = 1$ and $k-1 > r$, which is not the case. Now $d = 4$ and $e = k$. Here $e(k-1) > 2r/e$ is impossible. so we must have $t=2$, $n-1 = r/e$, and $e(k-1)-n(t-1)= 1$. Then $n = 1 + r/e = 1 + (q^2 + 1)$ and $n = e(k-1)-1 = (q+1)q-1$.

Consequently, $q = 3$, $n = 11$, and $c = 11$. Choose j with $t_i > 1$. As $1 = t-1 = \sum_i (t_i-1)w_i$, we must have $t_j = 2$ and $w_j = 1$. Since Γ_x acts on the 10 = $w_j r/e$ points of $C - \{x\}$, it follows that the group Γ_c^c induced by Γ on C is 2-transitive of degree 11. A Sylow 11-subgroup Σ^* of Γ is cyclic and has a subgroup Σ of order 11 fixing each class C. Thus Σ is in the stabilizer Π in Γ of all 11 clases. Since $N_{P\Gamma L(5,3)}(\Sigma^*) = N_{P\Gamma L(5,3)}(\Sigma)$ is Frobenius of order 11².5, $N_{\pi}(\Sigma)$ $=C_{\pi}(\Sigma)$, so Π has a normal 11-complement. Then $\Sigma^c = \Pi^c \lhd \Gamma^c_c$ which is absurd. II) If $\vert \Delta \vert$ is odd then $d = 4$, $q = 2$ and $\vert \Gamma \vert = 31.5$.

PROOF. By (I) and the Feit-Thompson Theorem [3], Γ has a normal elementary abelian *l*-subgroup $\Lambda \leq \Delta$ transitive on points (where $l > 2$ is a prime). The complete inverse image of Λ in GL($d + 1$, q) acts fixed-point-freely, so that Λ is cyclic and $v = |\Lambda| = l$. Then $b = l(q^d - 1)/(q^2 - 1)$ divides $|N_{P\Gamma L(d+1,q)}(\Lambda)|$ $=$ $l(d+1)i$, where $q = p^i$. Now (II) follows easily. (Compare Lüneburg [9] for this part of the proof of Theorem 1.)

From now on we will assume that $|\Delta|$ is even.

III) $p > 2$.

PROOF. Suppose that $p = 2$ and let $\sigma \in \Delta$ be an involution. Then $F(\sigma)$ is a subspace. Suppose first that dim $F(\sigma) \leq 1$. Then dim $F(\sigma) = 1$ and $d = 3$. Each plane $E \supset F(\sigma)$ is fixed by σ . Each line in E determines a conjugate of σ fixing that line pointwise. Thus, the global stabilizer Γ_E of E induces a collineation group Π of E such that each line of E is fixed pointwise by an involution in Π fixing just the points of that line. By [2, p. 193], there is a line L of E such that $\Pi(L)$ is transitive on $E - L$ and Π_L is transitive on L. It follows that, for any line $M \neq L$ of E, $\Pi(L)_M$ is transitive on $M-L \cap M$. Thus, Γ_M is 2-transitive on M , so Γ is 2-transitive on points, which is not the case.

We can thus find a subspace X with dim $X \ge 2$ and $|\Delta(X)|$ even. Choose X such that dim $X \ge 2$, $X = F(\Sigma)$ for some 2-group $\Sigma \ne 1$, and dim X is minimal for such a subspace. We may assume that Σ is Sylow in $\Delta(X)$.

Consider a line $L \subset X$. Clearly $\left| \Delta_L^L \right|$ is even. Let $\Delta_L \geq \Lambda \triangleright \Sigma$ with $\left| \Lambda : \Sigma \right| = 2$. Then Λ^X is an involution. By our choice of X and Σ , dim $F(\Lambda) \leq 1$. Since $\dim X \ge 2$, $\dim F(\Lambda) = 1$. Then Σ is not Sylow in $\Delta(L)$, so we can choose Λ with $L = F(\Lambda)$. Clearly Λ^X fixes each plane E of X containing L. Since L can be taken as any line of E, by considering $N(\Sigma)_{E}^{E}$ we obtain the same contradiction as in the first paragraph.

IV) A *contains an involution which has fixed points.*

PROOF. Suppose not. Let $\hat{\Delta}$ and $\hat{\Gamma}$ be the complete inverse images of Δ and Γ in $\Gamma L(d + 1, q)$, so that $\widehat{\Delta}$ is a group of linear transformations of a $d + 1$ -dimensional GF(q)-space V. Our hypothesis is that $\hat{\Delta}$ has just one involution, and hence has cyclic or generalized quaternion Sylow 2-subgroups.

Clearly v is even. By (I), $O(\Delta) = 1$ and Δ is not a 2-group. By Burnside's transfer theorem, $\hat{\Delta}$ has generalized quaternion Sylow 2-subgroups. The Gorenstein-Walter Theorem [4] thus implies that either (i) $\Delta \approx A_7$ or (ii) $\Delta \gg \Delta^*$ with $\Delta^* \approx PSL(2,m)$ for some odd m. By (I), $C_r(\Delta^*) = 1$, so either (i) $\Gamma \approx A_7$ or S_7 , or (ii) Γ is isomorphic to a subgroup of $P\Gamma\Gamma(2, m)$ containing $PSL(2, m)$.

Suppose first that $p \, \big| \, |\Gamma|$ (where p is again the prime dividing q). Since $p \not\downarrow b$, each normal subgroup of Γ of index a power of p must be transitive on lines. Consequently, we may assume that Δ contains a Sylow p-subgroup Π of Γ . Clearly Π fixes a point x. Note that $p \mid |\Gamma_M^M|$ for any line M; for if $1 \neq \pi \in \Pi$. then π fixes some subspace X containing $F(\pi)$ as a hyperplane, and π induces a nontrivial elation on X. We now claim that x is the only fixed point of Π ; for if II fixes $y \neq x$ and $L = xy$, then $\Pi \leq \Delta(L)$, which is impossible since $p \left(|\Gamma_L| \right)$ and Π is Sylow in Γ . In particular, $N(\Pi)$ fixes x, so $N_\Delta(\Pi)$ has odd order

(ii) must hold, as otherwise $|S_7| \geq (7^4 \cdot 1)(7^3 - 1)/(7^2 - 1)(7 - 1) > |S_7|$. As above we may assume $\Pi \leq \Delta^*$. An examination of the Sylow subgroups of Δ^* shows that $|N_{\mathbf{A}^*}(\Pi)|$ can be odd only if $p|m$ and $m \equiv 3 \pmod{4}$. There is a fixed line L of Π , and $\Pi(L)$ is Sylow in $\Delta(L)$. By the Frattini argument, $\Delta_L = \Delta(L) N_{\Delta_L}(\Pi(L))$. Since Δ_L^L has even order (by (II)), so does $N_{\Delta}(\Pi(L))$. But $m \equiv 3 \pmod{4}$, so $\Pi(L)$ must be trivial. Consequently, $m = |\Pi| \le |L|-1$ $= q$. Now

$$
\frac{q^{d+1}-1}{q-1}\leq \left|\Delta^*\right|
$$

contradicting the fact that $d \ge 3$.

Thus, $p \nmid |\Gamma|$. In particular, since $3 ||\Delta|$, $p \neq 3$ and $q \geq 5$. Note that d is odd as $v = (q^{a+1} - 1)/(q - 1)$ is even. Also

1)
$$
|\Gamma| \ge b = \frac{(q^{d+1}-1)(q^d-1)}{(q-1)(q^2-1)} > q^{\frac{1}{4}(d+1)}q^{d-1} \ge q^4.
$$

If (i) holds, $p \neq 3$, 5, 7. By (1), $7! > q^4 \geq 11^4$, which is false.

Thus, (ii) holds and

2)
$$
m^4 > |\Gamma| > q^{\frac{1}{2}(3d-1)} \geqq q^4
$$
.

If $m < 9$ then, by (2), $7^3 \ge |\Gamma| > 5^4$, which is false. Similarly, if $m = 9$ then p

must be 7 (as $p \nmid |\Gamma|$) and $2 \cdot 9^3 > |\Gamma| > 7^4$, while if $m = 11$ then $11^3 > |\Gamma| > 7^4$. Thus, $m \geq 13$.

By [13], $\hat{\Delta}$ has a normal subgroup $\tilde{\Delta} \approx SL(2, m)$. Let K be the algebraic closure of GF(q). Then $V \otimes K$ is a $d + 1$ -dimensional $\tilde{\Delta}$ -module. Let W be any nontrivial irreducible constituent of $V \otimes K$. Then $d + 1 \geq \dim_K W = e$. On the other hand, W is an absolutely irreducible $\tilde{\Delta}$ -module of characteristic p, where $p \nmid |\tilde{\Delta}|$. Consequently, W can be lifted to a complex irreducible $\tilde{\Delta}$ -module of dimension e.

By [13], each nontrivial complex irreducible representation of $SL(2, m)$ has degree $\geq (m-1)/2$. Thus, $d+1 \geq e \geq (m-1)/2$.

Now (2) yields $m^{16} > q^{2(3d-1)} \ge 5^{3m-11}$. However, this is false for $m = 13$, and for $x \ge 13$ the function $16 \log x - (3x - 11) \log 5$ is decreasing. This contradiction proves (IV).

V) *The followin9 conditions hold:*

a) *Each line L determines a unique point* w_L *of L such that* Γ_L *fixes* w_L *and* Δ_L *is transitive on* $L - \{w_L\}$, *and*

b) $\left| \Delta(L) \right| \equiv 0 \pmod{p}$.

PROOF. By (IV) we can find an involution $\sigma \in \Delta$ with fixed points. Then $F(\sigma) = Y_1 \cup Y_2$ with Y_1, Y_2 disjoint subspaces spanning the whole space. Suppose first that both of these have dimension ≤ 1 . Then both have dimension 1 and σ fixes all planes $E \supset Y_1$. For each line L of E there is a conjugate of σ fixing just the points of L. By [2, 196] Δ_E^E is (c, M)-transitive for some $c \in M \subset E$, so (b) holds. If $c \in L \subset E$ and $L \neq M$ then Δ_{cL} is transitive on $L - \{c\}$. Since Γ is not 2-transitive, Γ_L must fix c, so (a) holds.

Now suppose dim $Y_1 \geq 2$. Let $\Sigma \neq 1$ be a 2-group in Δ maximal with respect to fixing some plane pointwise; let X be a subspace of dimension ≥ 2 fixed pointwise by Σ and not properly contained in any other such supspace. Then Σ is Sylow in $\Delta(X)$.

Suppose $\Delta \ge \Lambda \rightharpoonup \Sigma$, where $|\Lambda : \Sigma| = 2$ and Λ fixes some point $x \in X$. Let $\lambda \in \Lambda - \Sigma$. Then Σ fixes X and X^{λ} pointwise, while $x \in X \cap X^{\nu}$. The choice of X then forces $X = X^{\lambda}$, so Λ fixes X. Also, the choice of Σ shows that Λ fixes no plane of X pointwise.

Consider a line L of X. There is a conjugate of σ fixing just 2 points x, y of L. We can thus find Λ with $\Delta_{xy} \ge \Lambda \triangleright \Sigma$ and $|\Lambda : \Sigma| = 2$. Then Λ^x is an involution having fixed points. Let $F(\Lambda) \cap X = X_1 \cup X_2$ with X_1, X_2 subspaces. By our choice of Σ , both X_1 and X_2 have dimension ≤ 1 , and hence at least one of them has dimension 1. Then Σ has smaller order than a Sylow 2-subgroup of $\Delta(L)$, so we can choose our Λ so that $F(\Lambda) \cup X = L \cap X_0$ for some suspbace X_0 . All planes E of X containing L are fixed by Λ^X . Since L can be taken to be any line of E , (a) and (b) hold as in the first paragraph.

We now complete the proof of the theorem by playing the same game with p-groups as we have been playing with 2-groups. We may assume that d is chosen as small as possible in order to obtain a contradiction.

Let Π be a *p*-subgroup of Δ maximal with respect to fixing at least 2 points. By (Vb), $\Pi \neq 1$. Also, $F = F(\Pi)$ is a subspace of dimension ≥ 1 . By [8, pp. 400-401], $N_A(\Pi)$ is transitive on F. Thus, dim $F \ge 2$ by (Va).

Let L be any line of F. Let $\Phi \geq \Pi$ by a Sylow p-subgroup of Δ_L . Clearly $\Phi \triangleright \Pi$. By (Va), $|\Phi/\Pi| = q$. Φ acts on F, and by our choice of Π each element $\phi \neq 1$ of Φ^F fixes just one point of F. Here ϕ fixes L and w_L . If ϕ fixes a line $L' \neq L$ of F, it fixes a point of L', so that $w_L \in L'$, L and L' span a plane, and ϕ fixes more than one line and hence more than one point of this plane, which is not the case. Thus, each line of F is fixed by a p-element of Δ fixing no other line of F. By Gleason's Lemma, $N_A(\Pi)$ is transitive on the lines of F. Clearly, $N_{\Delta}(\Pi)^F$ is not 2-transitive. The minimality of d then implies that dim $F = 2$.

Now $N_A(\Pi)^F$ is a transitive subgroup of PGL(3,q) which is not 2-transitive. By [10] or [1], $N_A(\Pi)^F$ contains a normal cyclic subgroup and, if $x = w_L$, $\left| N_\Delta(\Pi)_{x}^F \right| = 1$ or 3. However, Φ^F fixes x and has order q. Thus, $q = 3$. It follows that $\Gamma = \Delta$ and $N(\Pi)^F$ _x has precisely $(13-1)/3 = 4$ orbits on $F - \{x\}$.

We now show that $N(\Pi)_x$ has at most 3 orbits on $F - \{x\}$. To see this, note that the number of point-orbits $\neq \{x\}$ of Γ_x is the number of orbits of Γ of ordered pairs of distinct points. By line-transitivity, if L is a line, the latter number is just the number of orbits of Γ_L of ordered pairs of distinct points of L. By (Va), Γ_L is transitive on $L - \{w_L\}$, and by (IV), Γ_L is even 2-transitive on the 3 points of $L - \{w_L\}$. Thus, Γ_L has precisely 3 orbits of ordered pairs of distinct points of L.

Let $\{x\}$, $A_1(x)$, $A_2(x)$, $A_3(x)$ be the point-orbits of Γ_x . If $y \in F \cap A_i(x)$ for some *i*, then Π is a Sylow p-subgroup of Γ_{xy} . It follows that $N(\Pi)_x$ is transitive on $F \cap A_i(x)$. Consequently, $N(\Pi)_x$ has at most 3 orbits on $F - \{x\}$, which is ridiculous.

This contradiction completes the proof of the theorem.

REFERENCES

1. D. M. Bloom, *The subgroups of PSL* (3, *q)for oddq,* Trans. Amer. Math. Soc. 127 (1967), 150-178.

2. P. Dembowski, *Finite geometries,* Springer, Berlin-Heidelberg-New York, 1968.

3. W. Feit and J. G. Thompson, *Solvability of groups of odd order,* Pacific J. Math. 13 (I 963), 771-1029.

4. D. Gorenstein and J. H. Walter, *The characterization of finite groups with dihedral Sylow 2-subgroups,* I, II, III, J. Algebra 3 (1965), 85-151,218-270, 354-393.

5. D. G. Higman and J. E. McLaughlin, *Geometric ABA-groups, Illinois* J. Math. 5 (1961), 382-397.

6. W. M. Kantor, *Automorphism groups of designs,* Math. Z. 109 (1969), 246-252.

7. W. M. Kantor, *On 2-transitive collineation groups of finite projective spaces* (to appear in Pacific J. Math.).

8. D. Livingstone and A. Wagner, *Transitivity of finite permutation groups on unordered sets*, Math. Z. 90 (1965), 393 403.

9. H. Ltineburg, *Fahnenhomogene Quadrupelsysteme,* Math. Z. 89 (1965), 82-90.

10. H. H. Mitchell, *Determination of the ordinary and modular ternary linear groups,* Trans. Amer. Math. Soc. 14 (1911), 207-242.

11. D. Perin, *On collineation groups of finite projective spaces,* Math. Z. 126 (1972), 135-142.

12. F. C. Piper, *Elations of finite projective planes,* Math. Z. 82 (1963), 247-258.

13. I. Schur, *Untersuchungen iiber die Darstellungen der endlichen Gruppen durch gebrochene lineare substitutionen,* J. Reine Angew. Math. 132 (1907), 85 137.

14. A. Wagner, *On eotlineation groups offinite projective spaces* I, Math. Z. 76 (1961), 411- 426.

UNIVERSITY OF OREGON EUGENE, OREGON, U.S.A. AND UNIVERSITY OF ILLINOIS CHICAGO, ILLINOIS, U.S.A.